• Users Online: 174
  • Print this page
  • Email this page
BRIEF COMMUNICATION
Year : 2020  |  Volume : 10  |  Issue : 4  |  Page : 294-297

A novel G26A variation in 5′ half of TGIF1 gene associates with high myopia in ethnic Kashmiri population from India


1 Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India; Department of Biochemistry, Government Medical College, Srinagar, Jammu and Kashmir, India
2 Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
3 Department of Biochemistry, Government Medical College, Srinagar, Jammu and Kashmir, India
4 Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
5 Department of Ophthalmology, Government Medical College, Srinagar, Jammu and Kashmir, India
6 Department of Statistics, University of Kashmir, Srinagar, Jammu and Kashmir, India

Correspondence Address:
Prof. Khursheed Iqbal Andrabi
Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/tjo.tjo_16_19

Rights and Permissions

This study aims to look at novel variations in TGIF1 gene and explores their potential association with high myopia in an ethnic population from Kashmir (India). Genomic DNA was genotyped for polymorphic variations, and allele frequencies were tested for the Hardy–Weinberg disequilibrium in 240 ethnic Kashmiri cases with high myopia with a spherical equivalent of >−6 diopters (D) and compared with emmetropic controls with spherical equivalent within −0.5D in one or both eyes represented by a sample size of 228. In this study, we found a novel sequence variation G26A (GAT to AAT) in 5′ half of TGIF1 gene (p. aspartic acid >asparagine) at a frequency of 62% (148/240, P ≤ 0.0001). Variation appears to associate with high myopia significantly (P ≤ 0.001) as it happens to be present only in high myopia affected individuals. Further, it shows statistical significance for its association with gender and the degree of myopia (P ≤ 0.05). In addition, in silico predictions show that variation likely has an impact on the structure and functional properties of the protein. The assessment of the I-TASSER protein structure showed higher energy for a wild-type protein (−5820.186 kJ/mol) as compared to mutant protein (−6595.593 kJ/mol).


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed868    
    Printed54    
    Emailed0    
    PDF Downloaded48    
    Comments [Add]    

Recommend this journal